(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(x)) → s(s(f(p(s(x)))))
f(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(x)) →+ s(s(f(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(s(x)) → s(s(f(p(s(x)))))
f(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(s(x)) → s(s(f(p(s(x)))))
f(0') → 0'
p(s(x)) → x
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
p :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
s(
x)) →
s(
s(
f(
p(
s(
x)))))
f(
0') →
0'p(
s(
x)) →
xTypes:
f :: s:0' → s:0'
s :: s:0' → s:0'
p :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_s:0'2_0(
n4_0)) →
gen_s:0'2_0(
*(
2,
n4_0)), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_s:0'2_0(0)) →RΩ(1)
0'
Induction Step:
f(gen_s:0'2_0(+(n4_0, 1))) →RΩ(1)
s(s(f(p(s(gen_s:0'2_0(n4_0)))))) →RΩ(1)
s(s(f(gen_s:0'2_0(n4_0)))) →IH
s(s(gen_s:0'2_0(*(2, c5_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
s(
x)) →
s(
s(
f(
p(
s(
x)))))
f(
0') →
0'p(
s(
x)) →
xTypes:
f :: s:0' → s:0'
s :: s:0' → s:0'
p :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'2_0(n4_0)) → gen_s:0'2_0(*(2, n4_0)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0'2_0(n4_0)) → gen_s:0'2_0(*(2, n4_0)), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
s(
x)) →
s(
s(
f(
p(
s(
x)))))
f(
0') →
0'p(
s(
x)) →
xTypes:
f :: s:0' → s:0'
s :: s:0' → s:0'
p :: s:0' → s:0'
0' :: s:0'
hole_s:0'1_0 :: s:0'
gen_s:0'2_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'2_0(n4_0)) → gen_s:0'2_0(*(2, n4_0)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0'2_0(n4_0)) → gen_s:0'2_0(*(2, n4_0)), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)